University of North Texas, College of Engineering
Department of Electrical Engineering

EENG 2610: Circuit Analysis

Summer 2010
Wednesday, 1:00 PM – 3:50 PM
Classroom: NTDP B217

Instructor
• Oluwayomi Adamo, Office: NTDP B208, Tel: (940) 891-6874,
 Email: Oluwayomi.adamo@unt.edu
 Office Hours: Tuesday, 10:00 AM - 12:00 PM
 (Additional appointments can be requested by email.)
• Teaching Assistant: Sashi Robbi, Email: SashiPrabhaRobbi@My.UNT.EDU

Required Textbook
 Authors: J. David Irwin and R. Mark Nelms

Prerequisites
• MATH 1720, co-requisite: PHYS 2220/2240

Course Objectives
• Understand basic concepts of DC and AC circuit behavior;
• Develop ability to apply circuit analysis techniques to simple RLC and op-amp circuits;
• Develop ability to develop and solve circuit analysis problems.
 (ABET outcomes: a, e)

General Policies
• Class attendance is mandatory. You will need to sign attendance sheet regularly, which will affect your final grade.
• Everyone must turn in her/his own individual homework. Simply copying other's homework will be treated as a violation of academic honesty.
• It is the responsibility of students with certified disabilities to provide the instructor with appropriate documentation from the Dean of Students Office (see http://www.unt.edu/oda).
• Please visit http://www.unt.edu/csrri/ for your rights and responsibilities.

Grading Policies
• Quiz, 15%
• Labs, 5%
• Homework, 20%
- 3 Exams, 60% (20% for each)
- Late homework will be accepted with penalty and make-up exams will not be given except in extenuating circumstances.

Course Outline and Tentative Schedule

1. Basic Concepts, Ohm's Law
3. Resistor Combinations, Wye Delta Transformations, Dependent Sources
4. Nodal Analysis
5. Loop Analysis
6. Op-Amp
7. Op-Amp, Linearity, Superposition
8. Thevenin's Theorem
9. Norton's Theorem, Maximum Power Transfer
10. Capacitors, Inductors
11. C L Combinations, RC Op-Amp
12. First-order Circuits
13. Second-order Circuits
14. Sinusoids, Phasors, Impedance, Admittance
15. AC Circuit Analysis Techniques
16. Power, Power Transfer, RMS, Power Factor
17. Complex Power, Power Factor Correction, Single-Phase Three-Wire Circuits
18. Mutual Inductance
19. Energy Analysis, Ideal Transformer
20. Polyphase Circuits
21. Variable Frequency-Response Analysis, Sinusoidal Frequency Analysis
22. Resonant Circuits, Filter Networks