EENG 2920 Analog Circuit Design
Spring 2010

Instructor: Oluwayomi Adamo - B 208
Phone: 940-891-6874, oluwayomi.adamo@unt.edu
Class Hours: Th. 1:00 PM - 3:50 PM
Office Hours: Tues. & Thurs. 4:00 PM - 5:00 PM
Teaching Assistant: TBD
Office Hours: TBD

Prerequisite
Circuit Analysis (EENG 2610)

Required Textbooks

Course Learning Outcomes
After completing this course, students will be able to:
Practice safety in the laboratory.
- Competently use state of the art electronic test equipment (such as digital scope, waveform generator) and hardware/software tool (PSpice) to characterize the behavior of electric and electronic devices and circuits.
- Design, construct and characterize electric and electronic circuits according to specification on breadboards.
- Identify values of resistor, capacitor and inductor and pins of IC chips from datasheet.
- Use of SPICE as a tool for simulating various circuits for analysis.
- Model of components in PSpice.
- Analyze and interpret experimental results and writing lab report.
- Work in teams and carryout project planning and scheduling.
- Conduct system testing and troubleshooting in analog environments.
- Research design ideas and collect reference material that relates to their projects.
- Defend their projects orally with good presentation skills.
- Communicate effectively results of experiments and group projects through weekly written reports and project notebook.
- Understand engineering design, the steps involved and carry out engineering design principles in relation to their project.
- Demonstrate an understanding of ethical and professional issues as related to their projects.

General Policies
- Class attendance is mandatory.
- It is strongly encouraged to get to know each other in the class. Discussions on course materials are allowed.
- Everyone must turn in his/her own individual work. Submitting others homework will be treated as a violation of academic honesty.
• Assignments are due before the class in the following week.
• All lab assignments and assignment reports are individual work.
• Late submissions will be penalized except in extenuating circumstances.

• It is the responsibility of the students with certified disabilities to provide the instructor with appropriate documentation from the Dean of Students Office (see www.unt.edu/oda).
• Please visit www.unt.edu/csrr/ for your rights and responsibilities.

Grading Policy
• Hands-On-Exercises (Pspice + Lab. Exercises), 30%
• Mini-projects, 20%
• Main Projects, 50%

Tentative Schedule – Subject to change by the instructor

1. Introduction to Pspice
2. Basic Instrumentation I and II
3. DC Circuit Analysis
4. Transient Analysis
5. AC Circuit Analysis
6. OP-amp Circuit Analysis
7. Transformers
8. Introduction to Mini-project
9. Introduction to Main Project